Динамика ракет
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Динамика ракет

Динамика ракет, ракетодинамика, наука о движении летательных аппаратов, снабжённых реактивными двигателями. Наиболее важная особенность полёта ракеты с работающим (развивающим тягу) двигателем — существенное изменение её массы во время движения вследствие сгорания топлива. Так, одноступенчатые ракеты в процессе разгона (набора скорости) теряют до 90% первоначальной (стартовой) массы. Законы движения ракеты при работающем двигателе даются уравнениями механики тел переменной массы.

  Теоретические основы Д. р. заложены трудами русских учёных И. В. Мещерского и К. Э. Циолковского в конце 19 — начале 20 вв.(века) Быстрое развитие Д. р. началось после окончания 2-й мировой войны 1939—45 в связи с ростом ракетостроения в ряде промышленно развитых стран (СССР, США, Франция и др.).

  Важнейшие разделы Д. р.: 1) изучение движения центра масс (центра тяжести) ракет, т. е. создание теории, посвящённой решению траекторных задач ракетодинамики; 2) изучение движения ракет относительно центра масс. В этом разделе исследуются вопросы стабилизации ракет, возможности маневрирования и управления, наведения на заданную цель, а также стыковки реактивных летательных аппаратов (космических кораблей с ракетными двигателями) на орбите в космическом пространстве; 3) экспериментальная ракетодинамика, где изучаются экспериментальные методы исследования движения ракет. Здесь широко используются оптические и радиотехнические приборы для определения геометрических, кинематических и динамических характеристик полёта, определяющих как движение центра масс ракеты, так и движение относительно центра масс.

  Своеобразный класс задач Д. р. вызван необходимостью программирования величины и направления реактивной силы, чтобы получить при имеющемся количестве топлива (горючего и окислителя) наилучшие лётные характеристики для достижения цели полёта (например, максимальная дальность полёта, минимальное время полёта до цели, максимальная кинетическая энергия в конце работы двигателя и др.). Такие задачи успешно решаются методами вариационного исчисления и способствуют развитию самих этих методов. В связи с созданием очень больших ракет на жидком топливе успешно развиваются новые разделы Д. р., в которых изучается движение корпуса ракеты с учётом колебаний жидкого топлива в её баках, а также исследуется движение ракеты как упругого тела. Эти новые задачи столь сложны, что недоступны аналитическому изучению. Для решения таких (многопараметрических) задач применяют цифровые ЭВМ(электронная вычислительная машина).

  Для динамики управляемых ракет (например, зенитных управляемых ракет, ракет противоракетной обороны и др.) некоторые из внешних воздействий имеют вероятностный характер и количественно определяются «случайными» функциями времени. Решение таких задач требует использования теории вероятностных процессов.

  Лит.: Космическая техника, под ред. Г. Сейферта, пер.(перевод) с англ.(английский), М., 1964; Космодемьянский А. А., Механика тел переменной массы (Теория реактивного движения), ч. 1, М., 1947; Фертрегт М., Основы космонавтики, пер.(перевод) с англ.(английский), М., 1969; Циолковский К. Э., Реактивные летательные аппараты, М., 1964.

  А. А. Космодемьянский.